Genetic adaptations in the population history of Arabidopsis thaliana

Author:

Kishino Hirohisa12ORCID,Nakamichi Reiichiro3ORCID,Kitada Shuichi4ORCID

Affiliation:

1. Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 , Japan

2. Research and Development Initiative, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 , Japan

3. Fisheries Resources Institute, Japan Fisheries Research and Education Agency , 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648 , Japan

4. Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology , 4-5-7 Konan, Minato-ku, Tokyo 108-8477 , Japan

Abstract

Abstract A population encounters a variety of environmental stresses, so the full source of its resilience can only be captured by collecting all the signatures of adaptation to the selection of the local environment in its population history. Based on the multiomic data of Arabidopsis thaliana, we constructed a database of phenotypic adaptations (p-adaptations) and gene expression (e-adaptations) adaptations in the population. Through the enrichment analysis of the identified adaptations, we inferred a likely scenario of adaptation that is consistent with the biological evidence from experimental work. We analyzed the dynamics of the allele frequencies at the 23,880 QTLs of 174 traits and 8,618 eQTLs of 1,829 genes with respect to the total SNPs in the genomes and identified 650 p-adaptations and 3,925 e-adaptations [false discovery rate (FDR) = 0.05]. The population underwent large-scale p-adaptations and e-adaptations along 4 lineages. Extremely cold winters and short summers prolonged seed dormancy and expanded the root system architecture. Low temperatures prolonged the growing season, and low light intensity required the increased chloroplast activity. The subtropical and humid environment enhanced phytohormone signaling pathways in response to the biotic and abiotic stresses. Exposure to heavy metals selected alleles for lower heavy metal uptake from soil, lower growth rate, lower resistance to bacteria, and higher expression of photosynthetic genes were selected. The p-adaptations are directly interpretable, while the coadapted gene expressions reflect the physiological requirements for the adaptation. The integration of this information characterizes when and where the population has experienced environmental stress and how the population responded at the molecular level.

Funder

Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3