Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice

Author:

Sun Xiaoxuan123ORCID,Xie Yonghong4,Xu Kaizun5ORCID,Li Jianxiong45ORCID

Affiliation:

1. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , China

2. South China National Botanical Garden , Guangzhou 510650 , China

3. University of Chinese Academy of Sciences , Beijing 100049 , China

4. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University , Nanning 530004 , China

5. Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University , Nanning 530004 , China

Abstract

Abstract F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3