Functional diversity of subgroup 5 R2R3-MYBs promoting proanthocyanidin biosynthesis and their key residues and motifs in tea plant

Author:

Jiao Tianming1,Huang Yipeng1,Wu Ying-Ling2,Jiang Ting2,Li Tongtong1,Liu Yanzhuo1,Liu Yvchen2,Han Yunyun2,Liu Yajun2,Jiang Xiaolan1,Gao Liping2,Xia Tao1ORCID

Affiliation:

1. Anhui Agricultural University State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, , West 130 Changjiang Road, Hefei 230036 Anhui, China

2. Anhui Agricultural University School of Life Science, , Hefei 230036, Anhui, China

Abstract

Abstract The tea plant (Camellia sinensis) is rich in polyphenolic compounds. Particularly, flavan-3-ols and proanthocyanidins (PAs) are essential for the flavor and disease-resistance property of tea leaves. The fifth subgroup of R2R3-MYB transcription factors comprises the primary activators of PA biosynthesis. This study showed that subgroup 5 R2R3-MYBs in tea plants contained at least nine genes belonging to the TT2, MYB5, and MYBPA types. Tannin-rich plants showed an expansion in the number of subgroup 5 R2R3-MYB genes compared with other dicotyledonous and monocot plants. The MYBPA-type genes of tea plant were slightly expanded. qRT–PCR analysis and GUS staining analysis of promoter activity under a series of treatments revealed the differential responses of CsMYB5s to biotic and abiotic stresses. In particular, CsMYB5a, CsMYB5b, and CsMYB5e responded to high-intensity light, high temperature, MeJA, and mechanical wounding, whereas CsMYB5f and CsMYB5g were only induced by wounding. Three genetic transformation systems (C. sinensis, Nicotiana tabacum, and Arabidopsis thaliana) were used to verify the biological function of CsMYB5s. The results show that CsMYB5a, CsMYB5b, and CsMYB5e could promote the gene expression of CsLAR and CsANR. However, CsMYB5f and CsMYB5g could only upregulate the gene expression of CsLAR but not CsANR. A series of site-directed mutation and domain-swapping experiments were used to verify functional domains and key amino acids of CsMYB5s responsible for the regulation of PA biosynthesis. This study aimed to provide insight into the induced expression and functional diversity model of PA biosynthesis regulation in tea plants.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3