Practical isogeometric shape optimization: parametrization by means of regularization

Author:

Limkilde A1ORCID,Evgrafov A2,Gravesen J1,Mantzaflaris A3

Affiliation:

1. Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs Lyngby, Denmark

2. Department of Mathematical Sciences, Aalborg University, 9210 Aalborg, Denmark

3. Inria Sophia Antipolis, Université Côte d’Azur, 06902 Sophia Antipolis cedex, France

Abstract

Abstract Shape optimization based on isogeometric analysis (IGA) has gained popularity in recent years. Performing shape optimization directly over parameters defining the computer-aided design (CAD) geometry, such as the control points of a spline parametrization, opens up the prospect of seamless integration of a shape optimization step into the CAD workflow. One of the challenges when using IGA for shape optimization is that of maintaining a valid geometry parametrization of the interior of the domain during an optimization process, as the shape of the boundary is altered by an optimization algorithm. Existing methods impose constraints on the Jacobian of the parametrization, to guarantee that the parametrization remains valid. The number of such validity constraints quickly becomes intractably large, especially when 3D shape optimization problems are considered. An alternative, and arguably simpler, approach is to formulate the isogeometric shape optimization problem in terms of both the boundary and the interior control points. To ensure a geometric parametrization of sufficient quality, a regularization term, such as the Winslow functional, is added to the objective function of the shape optimization problem. We illustrate the performance of these methods on the optimal design problem of electromagnetic reflectors and compare their performance. Both methods are implemented for multipatch geometries, using the IGA library G+Smo and the optimization library Ipopt. We find that the second approach performs comparably to a state-of-the-art method with respect to both the quality of the found solutions and computational time, while its performance in our experience is more robust for coarse discretizations.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference48 articles.

1. Topology optimization of metallic devices for microwave applications;Aage;International Journal for Numerical Methods in Engineering,2010

2. Gauss–Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis;Bartoň;Computer-Aided Design,2017

3. A low-rank tensor method for PDE-constrained optimization with isogeometric analysis;Bünger;SIAM Journal on Scientific Computing,2020

4. Fast formation of isogeometric Galerkin matrices by weighted quadrature;Calabro;Computer Methods in Applied Mechanics and Engineering,2017

5. Strong multipatch C1-coupling for isogeometric analysis on 2D and 3D domains;Chan;Computer Methods in Applied Mechanics and Engineering,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3