Urban coyotes are genetically distinct from coyotes in natural habitats

Author:

Adducci Anthony1,Jasperse Jeremy1,Riley Seth2,Brown Justin2,Honeycutt Rodney1,Monzón Javier1

Affiliation:

1. Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA

2. Santa Monica Mountains National Recreation Area, National Park Service, 401 West Hillcrest Drive, Thousand Oaks, CA 91360, USA

Abstract

AbstractUrbanization is increasing throughout the world, transforming natural habitats. Coyotes (Canis latrans) are found in highly urban, suburban, rural and undeveloped mountainous habitats, making them an exemplary model organism to investigate the effects of urbanization on animals. We hypothesized that coyotes in natural habitats are more genetically related to distant coyotes in similar natural habitats and less related to coyotes in urban areas due to natal habitat-biased dispersal. We also hypothesized that increasing urbanization would result in decreased genetic diversity due to habitat fragmentation, dispersal barriers and genetic drift. We analyzed 10 microsatellite genetic markers from 125 individual coyotes sampled across a spectrum of highly urban to highly natural areas in southern California. Most coyotes clustered into four distinct genetic populations, whereas others appeared to have admixed ancestry. Three genetic populations were associated primarily with urban habitats in Los Angeles and Orange Counties. In contrast, the remaining population was associated with more naturally vegetated land near the surrounding mountains. Coyotes living in natural areas formed a genetically distinct cluster despite long geographic distances separating them. Genetic diversity was negatively associated with urban/suburban land cover and local road density, and positively associated with the relative amount of natural vegetation. These results indicate that genetic differentiation and loss of genetic diversity coincided with the extremely rapid expansion of Greater Los Angeles throughout the 1900s. Thus, urbanization reduces gene flow and erodes genetic diversity even in a habitat generalist thought to be minimally impacted by land development.

Funder

National Science Foundation Research

Natural Science Division of Pepperdine University

Pepperdine Academic Year Undergraduate Research Initiative

Publisher

Oxford University Press (OUP)

Subject

Urban Studies,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3