DNA from macrophages induces fibrosis and vasculopathy through POLR3A/STING/type I interferon axis in systemic sclerosis

Author:

Liu Chaofan1,Tang Jiaxuan1,Luo Wei2,Liu Shiying1,Sun Xiaolei2,Hong Wenxuan2,Zhou Xing1,Lu Jinghao1,Li Ming1,Zhu Lubing1

Affiliation:

1. Department of Dermatology

2. Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University , Shanghai, China

Abstract

Abstract Objective To clarify the role of RNA polymerase III A (POLR3A)/type I IFN in the pathogenesis of SSc. Methods Cytosolic DNA and stimulator of IFN genes (STING) pathway in skin or serum of SSc patients were detected by immunofluorescence, immunohistochemistry and western blotting. DNA from human macrophages was transfected to SSc fibroblasts or human umbilical vein endothelial cells (HUVECs) and then markers of POLR3A/STING pathway were detected by real-time qPCR, western blotting and confocal microscopy. After H151 treatment or knocking down POLR3A/STING, type I IFN response, monocytes adhesion and activation of fibroblasts and HUVECs were evaluated. Regulation of IFN regulatory factor 3 (IRF3) on monocyte chemoattractant protein-1 (MCP-1) was determined by chromatin immunoprecipitation. In bleomycin (BLM)-induced SSc mice, the effect of STING knockout or H151 on vasculopathy and fibrosis was assessed. Results Cytosolic DNA, colocalization of STING with alpha-smooth muscle actin (α-SMA) or CD31 in the skin, and STING pathway in the serum of SSc patients were increased. Macrophage-derived DNA stimulated the translocation of POLR3A from nucleus to the perinuclear region near STING and activated POLR3A/STING/type I IFN response, monocytes adhesion and MCP-1 expression in fibroblasts/HUVECs and collagen overproduction of fibroblasts. The activated IRF3 bound to the promoter of MCP-1. STING deficiency or H151 administration ameliorated fibrosis and vasculopathy both in vitro and in BLM-induced SSc mice. Conclusions SSc presented increased DNA leakage and STING pathway activation. DNA from macrophages induced type I IFN signature of fibroblasts and ECs through POLR3A/STING pathway. Blocking POLR3A/STING axis provides a new therapeutic target for SSc.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3