CCCTC-binding factor: the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 that upregulates the sialylation of anti-citrullinated protein antibodies in rheumatoid arthritis

Author:

Zhao Heping12,Wang Hao12,Qin Yang2,Ling Sunwang2,Zhai Haige2,Jin Jiayi23,Fang Ling12,Cao Zelin2,Jin Shengwei14,Yang Xinyu23,Wang Jianguang125ORCID

Affiliation:

1. Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, China

2. Institute of Autoimmune Diseases, Wenzhou Medical University , Wenzhou, Zhejiang, China

3. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China

4. Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University , Zhejiang, China

5. Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China

Abstract

Abstract Objective Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. Methods Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell–specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. Results We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell–specific CTCF knockout mice. Conclusion CCCTC-binding factor is the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3