Differences in morphological and physiological plasticity in two species of first-year conifer seedlings exposed to drought result in distinct survivorship patterns

Author:

Augustine Steven P12ORCID,Reinhardt Keith12

Affiliation:

1. Department of Biological Sciences, Idaho State University, Pocatello, ID, USA

2. Department of Botany, University of Wisconsin – Madison, Madison, WI, USA

Abstract

Abstract First-year tree seedlings represent a critical demographic life stage, functioning as a bottleneck to forest regeneration. Knowledge of how mortality is related to whole-seedling carbon and water relations is deficient and is required to understand how forest compositions will be altered in future climatic conditions. We performed a greenhouse drought experiment using first-year seedlings of two common pine species found in the Intermountain West, USA. Gas exchange, biomass gain, allometry and xylem water potentials were compared between well-watered and droughted seedlings from emergence until drought-induced mortality. In both species, morphological adjustments to confer drought tolerance, such as increased leaf mass per unit area, were not observed in seedlings exposed to drought, and droughted seedlings maintained photosynthesis and whole-seedling carbon gain well into the experiment. Yet, there were important differences between species in terms of carbon budgets, physiological responses and mortality patterns. In Pinus ponderosa P. & C. Lawson, physiological acclimation to drought was much greater, evident through stronger stomatal regulation and increased water-use efficiency. Photosynthesis and carbon budgets in P. ponderosa were greater than in Pinus contorta Dougl. ex. Loud., and survival was 100% until critical hydraulic thresholds in leaf water content and seedling water potentials were crossed. In P. contorta, physiological adjustments to drought were less, and mortality occurred much sooner and well before injurious hydraulic thresholds were approached. First-year conifer seedlings appear canalized for a suite of functional traits that prioritize short-term carbon gain over long-term drought tolerance, suggesting that conifer seedling survival is linked with carbon limitations, even during drought, with survival in species having narrower carbon survival margins being more hampered by carbon limitations.

Funder

Idaho State University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3