Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption

Author:

Wang Peilin1,Fu Chen1,Wang Liying1,Yan Tao1ORCID

Affiliation:

1. State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University , No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000 , China

Abstract

Abstract Increased atmospheric nitrogen (N) deposition could create an imbalance between N and phosphorus (P), which may substantially impact ecosystem functioning. Changes in autumnal phenology (i.e., leaf senescence) and associated leaf nutrient resorption may profoundly impact plant fitness and productivity. However, we know little about how and to what extent nutrient addition affects leaf senescence in tree species, or how changes in senescence may influence resorption. We thus investigated the impacts of N and P addition on leaf senescence and leaf N resorption in 2-year-old larch (Larix principisrupprechtii) seedlings in northern China. Results showed that nutrient addition (i.e., N, P or N + P addition) significantly delayed autumnal leaf senescence, and decreased leaf N resorption efficiency (NRE) and proficiency (NRP), particularly in the N and N + P treatments. Improved leaf N concentrations were correlated with delayed leaf senescence, as indicated by the positive relationship between mature leaf N concentrations and the timing of leaf senescence. Following nutrient addition, larch seedlings shifted toward delayed onset, but more rapid, leaf senescence. Additionally, we observed an initial negative correlation between the timing of leaf senescence and NRE and NRP, followed by a positive correlation, indicating delayed and less efficient remobilization during the early stages of senescence, followed by accelerated resorption in the later stages. However, the latter effect was potentially impaired by the increased risk of early autumn frost damage, thus failed to fully compensate for the negative effects observed during the early stages of senescence. Improved soil P availability increased leaf N resorption and thus weakened the negative impact of delayed leaf senescence on leaf N resorption, so P addition had no significant impact on leaf N resorption. Overall, our findings clarify the relationship between nutrient addition–resorption and the linkage with leaf senescence, and would have important implications for plant nutrient conservation strategy and nutrient cycling.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference70 articles.

1. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span;Achat;Ecol Monogr,2018

2. Nutrient resorption from senescing leaves of perennials: are there general patterns?;Aerts;J Ecol,1996

3. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns;Aerts;Adv Ecol Res,2000

4. Patterns and mechanisms of nutrient resorption in plants;Brant;Crit Rev Plant Sci,2015

5. Chloroform fumigation and release of soil N: a rapid direct extraction method to measure microbial biomass N in soil;Brookes;Soil Biol Biochem,1985

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3