Biometric contrastive learning for data-efficient deep learning from electrocardiographic images

Author:

Sangha Veer12ORCID,Khunte Akshay3,Holste Gregory4,Mortazavi Bobak J56,Wang Zhangyang4,Oikonomou Evangelos K1,Khera Rohan167ORCID

Affiliation:

1. Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University , New Haven, CT, 06510, United States

2. Department of Engineering Science, Oxford University , Oxford, OX1 3PJ, United Kingdom

3. Department of Computer Science, Yale University , New Haven, CT, 06511, United States

4. Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, TX, 78712, United States

5. Department of Computer Science & Engineering, Texas A&M University , College Station, TX, 77843, United States

6. Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital , New Haven, CT, 06510, United States

7. Section of Health Informatics, Department of Biostatistics, Yale School of Public Health , New Haven, CT, 06510, United States

Abstract

Abstract Objective Artificial intelligence (AI) detects heart disease from images of electrocardiograms (ECGs). However, traditional supervised learning is limited by the need for large amounts of labeled data. We report the development of Biometric Contrastive Learning (BCL), a self-supervised pretraining approach for label-efficient deep learning on ECG images. Materials and Methods Using pairs of ECGs from 78 288 individuals from Yale (2000-2015), we trained a convolutional neural network to identify temporally separated ECG pairs that varied in layouts from the same patient. We fine-tuned BCL-pretrained models to detect atrial fibrillation (AF), gender, and LVEF < 40%, using ECGs from 2015 to 2021. We externally tested the models in cohorts from Germany and the United States. We compared BCL with ImageNet initialization and general-purpose self-supervised contrastive learning for images (simCLR). Results While with 100% labeled training data, BCL performed similarly to other approaches for detecting AF/Gender/LVEF < 40% with an AUROC of 0.98/0.90/0.90 in the held-out test sets, it consistently outperformed other methods with smaller proportions of labeled data, reaching equivalent performance at 50% of data. With 0.1% data, BCL achieved AUROC of 0.88/0.79/0.75, compared with 0.51/0.52/0.60 (ImageNet) and 0.61/0.53/0.49 (simCLR). In external validation, BCL outperformed other methods even at 100% labeled training data, with an AUROC of 0.88/0.88 for Gender and LVEF < 40% compared with 0.83/0.83 (ImageNet) and 0.84/0.83 (simCLR). Discussion and Conclusion A pretraining strategy that leverages biometric signatures of different ECGs from the same patient enhances the efficiency of developing AI models for ECG images. This represents a major advance in detecting disorders from ECG images with limited labeled data.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3