Automated detection of substance use information from electronic health records for a pediatric population

Author:

Ni Yizhao12,Bachtel Alycia1,Nause Katie3,Beal Sarah23

Affiliation:

1. Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

2. Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA

3. Division of Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

Abstract

Abstract Objective Substance use screening in adolescence is unstandardized and often documented in clinical notes, rather than in structured electronic health records (EHRs). The objective of this study was to integrate logic rules with state-of-the-art natural language processing (NLP) and machine learning technologies to detect substance use information from both structured and unstructured EHR data. Materials and Methods Pediatric patients (10-20 years of age) with any encounter between July 1, 2012, and October 31, 2017, were included (n = 3890 patients; 19 478 encounters). EHR data were extracted at each encounter, manually reviewed for substance use (alcohol, tobacco, marijuana, opiate, any use), and coded as lifetime use, current use, or family use. Logic rules mapped structured EHR indicators to screening results. A knowledge-based NLP system and a deep learning model detected substance use information from unstructured clinical narratives. System performance was evaluated using positive predictive value, sensitivity, negative predictive value, specificity, and area under the receiver-operating characteristic curve (AUC). Results The dataset included 17 235 structured indicators and 27 141 clinical narratives. Manual review of clinical narratives captured 94.0% of positive screening results, while structured EHR data captured 22.0%. Logic rules detected screening results from structured data with 1.0 and 0.99 for sensitivity and specificity, respectively. The knowledge-based system detected substance use information from clinical narratives with 0.86, 0.79, and 0.88 for AUC, sensitivity, and specificity, respectively. The deep learning model further improved detection capacity, achieving 0.88, 0.81, and 0.85 for AUC, sensitivity, and specificity, respectively. Finally, integrating predictions from structured and unstructured data achieved high detection capacity across all cases (0.96, 0.85, and 0.87 for AUC, sensitivity, and specificity, respectively). Conclusions It is feasible to detect substance use screening and results among pediatric patients using logic rules, NLP, and machine learning technologies.

Funder

National Institutes of Health

Patient-Centered Outcomes Research Institute

Cincinnati Children's Hospital Medical Center

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3