Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture

Author:

Yun Donghwan12,Yang Hyun-Lim34,Kwon Soonil5,Lee So-Ryoung5,Kim Kyungju1,Kim Kwangsoo6,Lee Hyung-Chul3,Jung Chul-Woo3,Kim Yon Su12,Han Seung Seok1ORCID

Affiliation:

1. Division of Nephrology, Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea

2. Department of Biomedical Sciences, Seoul National University College of Medicine , Seoul, Republic of Korea

3. Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea

4. Biomedical Research Institute, Seoul National University Hospital , Seoul, Republic of Korea

5. Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea

6. Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital , Seoul, Republic of Korea

Abstract

Abstract Objectives Automatic detection of atrial fibrillation and flutter (AF/AFL) is a significant concern in preventing stroke and mitigating hemodynamic instability. Herein, we developed a Transformer-based deep learning model for AF/AFL segmentation in single-lead electrocardiograms (ECGs) by self-supervised learning with masked signal modeling (MSM). Materials and Methods We retrieved data from 11 open-source databases on PhysioNet; 7 of these databases included labeled ECGs, while the other 4 were without labels. Each database contained ECG recordings with durations of ≥30 s. A total of 24 intradialytic ECGs with paroxysmal AF/AFL during 4 h of hemodialysis sessions at Seoul National University Hospital were used for external validation. The model was pretrained by predicting masked areas of ECG signals and fine-tuned by predicting AF/AFL areas. Cross-database validation was used for evaluation, and the intersection over union (IOU) was used as a main performance metric in external database validation. Results In the 7 labeled databases, the areas marked as AF/AFL constituted 41.1% of the total ECG signals, ranging from 0.19% to 51.31%. In the evaluation per ECG segment, the model achieved IOU values of 0.9254 and 0.9477 for AF/AFL segmentation and other segmentation tasks, respectively. When applied to intradialytic ECGs with paroxysmal AF/AFL, the IOUs for the segmentation of AF/AFL and non-AF/AFL were 0.9896 and 0.9650, respectively. Model performance by different training procedure indicated that pretraining with MSM and the application of an appropriate masking ratio both contributed to the model performance. It also showed higher IOUs of AF/AFL labels than in previous studies when training and test databases were matched. Conclusion The present model with self-supervised learning by MSM performs robustly in segmenting AF/AFL.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3