Hypernodulating soybean mutant line nod4 lacking ‘Autoregulation of Nodulation’ (AON) has limited root-to-shoot water transport capacity

Author:

Caroline Silva Lopes Emile12,Pereira Rodrigues Weverton2,Ruas Fraga Katherine2,Machado Filho José Altino23,Rangel da Silva Jefferson24,Menezes de Assis-Gomes Mara2,Moura Assis Figueiredo Fabio Afonso Mazzei5,Gresshoff Peter M6,Campostrini Eliemar2

Affiliation:

1. Setor de Fisiologia Vegetal, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, CEP, Ilhéus, Bahia, Braz il

2. Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil

3. Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil

4. Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil

5. Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Estadual do Maranhão, São Luís, MA, Brazil

6. Integrative Legume Research Group, The University of Queensland, St. Lucia, Brisbane, QLD, Australia

Abstract

AbstractBackground and AimsAlthough hypernodulating phenotype mutants of legumes, such as soybean, possess a high leaf N content, the large number of root nodules decreases carbohydrate availability for plant growth and seed yield. In addition, under conditions of high air vapour pressure deficit (VPD), hypernodulating plants show a limited capacity to replace water losses through transpiration, resulting in stomatal closure, and therefore decreased net photosynthetic rates. Here, we used hypernodulating (nod4) (282.33 ± 28.56 nodules per plant) and non-nodulating (nod139) (0 nodules per plant) soybean mutant lines to determine explicitly whether a large number of nodules reduces root hydraulic capacity, resulting in decreased stomatal conductance and net photosynthetic rates under high air VPD conditions.MethodsPlants were either inoculated or not inoculated with Bradyrhizobium diazoefficiens (strain BR 85, SEMIA 5080) to induce nitrogen-fixing root nodules (where possible). Absolute root conductance and root conductivity, plant growth, leaf water potential, gas exchange, chlorophyll a fluorescence, leaf ‘greenness’ [Soil Plant Analysis Development (SPAD) reading] and nitrogen content were measured 37 days after sowing.Key ResultsBesides the reduced growth of hypernodulating soybean mutant nod4, such plants showed decreased root capacity to supply leaf water demand as a consequence of their reduced root dry mass and root volume, which resulted in limited absolute root conductance and root conductivity normalized by leaf area. Thereby, reduced leaf water potential at 1300 h was observed, which contributed to depression of photosynthesis at midday associated with both stomatal and non-stomatal limitations.ConclusionsHypernodulated plants were more vulnerable to VPD increases due to their limited root-to-shoot water transport capacity. However, greater CO2 uptake caused by the high N content can be partly compensated by the stomatal limitation imposed by increased VPD conditions.

Funder

CAPES

FAPERJ

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3