Analysis of super-enhancer using machine learning and its application to medical biology

Author:

Hamamoto Ryuji1,Takasawa Ken2,Shinkai Norio3,Machino Hidenori2,Kouno Nobuji4,Asada Ken5,Komatsu Masaaki5,Kaneko Syuzo6

Affiliation:

1. Division Chief in the Division of Medical AI Research and Development, National Cancer Center Research Institute; a Professor in the Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University and a Team Leader of the Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project

2. Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff in the Medical AI Research and Development, National Cancer Center Research Institute

3. Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University

4. Department of Surgery, Graduate School of Medicine, Kyoto University

5. Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff of Medical AI Research and Development, National Cancer Center Research Institute

6. Division of Medical AI Research and Development, National Cancer Center Research Institute and a Visiting Scientist in the Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project

Abstract

Abstract The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.

Funder

RIKEN Center for the Advanced Intelligence Project

MHLW ICT infrastructure establishment and implementation of artificial intelligence for clinical and medical research program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3