Benchmark of embedding-based methods for accurate and transferable prediction of drug response

Author:

Jia Peilin123ORCID,Hu Ruifeng23,Zhao Zhongming23456ORCID

Affiliation:

1. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation , Beijing 100101 , China

2. Center for Precision Health , School of Biomedical Informatics, , Houston, TX 77030 , USA

3. The University of Texas Health Science Center at Houston , School of Biomedical Informatics, , Houston, TX 77030 , USA

4. Human Genetics Center , School of Public Health, , Houston, TX 77030 , USA

5. The University of Texas Health Science Center at Houston , School of Public Health, , Houston, TX 77030 , USA

6. The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences , Houston, TX 77030 , USA

Abstract

Abstract Prediction of therapy response has been a major challenge in cancer precision medicine due to the extensive tumor heterogeneity. Recently, several deep learning methods have been developed to predict drug response by utilizing various omics data. Most of them train models by using the drug-response screening data generated from cell lines and then use these models to predict response in cancer patient data. In this study, we focus on and evaluate deep learning methods using transcriptome data for the long-standing question of personalized drug-response prediction. We developed an embedding-based approach for drug-response prediction and benchmarked similar methods for their performance. For all methods, we used pretreatment transcriptome data to train models and then conducted a comprehensive evaluation and comparison of the models using cross-panels, cross-datasets and target genes. We further validated the methods using three independent datasets assessing multiple compounds for their predictive capability of drug response, survival outcome and cell line status. As a result, the methods building on gene embeddings had an overall competitive performance with reduced overfitting when we applied evaluation parameters for model fitting as well as the correlation with clinical outcomes in the validation data. We further developed an ensemble model to combine the results from the three most competitive methods for an overall prediction. Finally, we developed DrVAEN (https://bioinfo.uth.edu/drvaen), a user-friendly and easy-accessible web-server that hosts all these methods for drug-response prediction and model comparison for broad use in cancer research, method evaluation and drug development.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3