Comparison and benchmark of structural variants detected from long read and long-read assembly

Author:

Lin Jiadong1232456,Jia Peng1232,Wang Songbo1232,Kosters Walter56,Ye Kai1232478

Affiliation:

1. MOE Key Lab for Intelligent Networks & Networks Security , Faculty of Electronic and Information Engineering, , Xi’an 710049 , China

2. Xi’an Jiaotong University , Faculty of Electronic and Information Engineering, , Xi’an 710049 , China

3. School of Automation Science and Engineering , Faculty of Electronic and Information Engineering, , Xi’an 710049 , China

4. Genome Institute, the First Affiliated Hospital of Xi’an Jiaotong University , Xi’an 710061 China

5. Leiden Institute of Advanced Computer Science , Faculty of Science, , Leiden 2311 EZ , The Netherlands

6. Leiden University , Faculty of Science, , Leiden 2311 EZ , The Netherlands

7. The School of Life Science and Technology, Xi’an Jiaotong University , Xi’an 710049 , China

8. Faculty of Science, Leiden University , Leiden 2311 , The Netherlands

Abstract

Abstract Structural variant (SV) detection is essential for genomic studies, and long-read sequencing technologies have advanced our capacity to detect SVs directly from read or de novo assembly, also known as read-based and assembly-based strategy. However, to date, no independent studies have compared and benchmarked the two strategies. Here, on the basis of SVs detected by 20 read-based and eight assembly-based detection pipelines from six datasets of HG002 genome, we investigated the factors that influence the two strategies and assessed their performance with well-curated SVs. We found that up to 80% of the SVs could be detected by both strategies among different long-read datasets, whereas variant type, size, and breakpoint detected by read-based strategy were greatly affected by aligners. For the high-confident insertions and deletions at non-tandem repeat regions, a remarkable subset of them (82% in assembly-based calls and 93% in read-based calls), accounting for around 4000 SVs, could be captured by both reads and assemblies. However, discordance between two strategies was largely caused by complex SVs and inversions, which resulted from inconsistent alignment of reads and assemblies at these loci. Finally, benchmarking with SVs at medically relevant genes, the recall of read-based strategy reached 77% on 5X coverage data, whereas assembly-based strategy required 20X coverage data to achieve similar performance. Therefore, integrating SVs from read and assembly is suggested for general-purpose detection because of inconsistently detected complex SVs and inversions, whereas assembly-based strategy is optional for applications with limited resources.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3