Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information

Author:

Wang Yongtian1ORCID,Liu Xinmeng1,Shen Yewei1,Song Xuerui2,Wang Tao1ORCID,Shang Xuequn1,Peng Jiajie1ORCID

Affiliation:

1. School of Computer Science at Northwestern Polytechnical University , Xi’an, China

2. children’s health prevention department of Xi’an Children’s Hospital

Abstract

AbstractEmerging studies have shown that circular RNAs (circRNAs) are involved in a variety of biological processes and play a key role in disease diagnosing, treating and inferring. Although many methods, including traditional machine learning and deep learning, have been developed to predict associations between circRNAs and diseases, the biological function of circRNAs has not been fully exploited. Some methods have explored disease-related circRNAs based on different views, but how to efficiently use the multi-view data about circRNA is still not well studied. Therefore, we propose a computational model to predict potential circRNA–disease associations based on collaborative learning with circRNA multi-view functional annotations. First, we extract circRNA multi-view functional annotations and build circRNA association networks, respectively, to enable effective network fusion. Then, a collaborative deep learning framework for multi-view information is designed to get circRNA multi-source information features, which can make full use of the internal relationship among circRNA multi-view information. We build a network consisting of circRNAs and diseases by their functional similarity and extract the consistency description information of circRNAs and diseases. Last, we predict potential associations between circRNAs and diseases based on graph auto encoder. Our computational model has better performance in predicting candidate disease-related circRNAs than the existing ones. Furthermore, it shows the high practicability of the method that we use several common diseases as case studies to find some unknown circRNAs related to them. The experiments show that CLCDA can efficiently predict disease-related circRNAs and are helpful for the diagnosis and treatment of human disease.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Northwestern Polytechnical University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3