sRNAfrag: a pipeline and suite of tools to analyze fragmentation in small RNA sequencing data

Author:

Nakatsu Ken12,Jijiwa Mayumi2,Khadka Vedbar2,Nasu Masaki2,Deng Youping2

Affiliation:

1. Emory College of Arts and Sciences, Emory University , 201 Dowman Dr, 30322, Georgia , United States of America

2. Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine , 651 Ilalo St, 96813, Hawaii , United States of America

Abstract

Abstract Fragments derived from small RNAs such as small nucleolar RNAs are biologically relevant but remain poorly understood. To address this gap, we developed sRNAfrag, a modular and interoperable tool designed to standardize the quantification and analysis of small RNA fragmentation across various biotypes. The tool outputs a set of tables forming a relational database, allowing for an in-depth exploration of biologically complex events such as multi-mapping and RNA fragment stability across different cell types. In a benchmark test, sRNAfrag was able to identify established loci of mature microRNAs solely based on sequencing data. Furthermore, the 5’ seed sequence could be rediscovered by utilizing a visualization approach primarily applied in multi-sequence-alignments. Utilizing the relational database outputs, we detected 1411 snoRNA fragment conservation events between two out of four eukaryotic species, providing an opportunity to explore motifs through evolutionary time and conserved fragmentation patterns. Additionally, the tool’s interoperability with other bioinformatics tools like ViennaRNA amplifies its utility for customized analyses. We also introduce a novel loci-level variance-score which provides insights into the noise around peaks and demonstrates biological relevance by distinctly separating breast cancer and neuroblastoma cell lines after dimension reduction when applied to small nucleolar RNAs. Overall, sRNAfrag serves as a versatile foundation for advancing our understanding of small RNA fragments and offers a functional foundation to further small RNA research. Availability: https://github.com/kenminsoo/sRNAfrag.

Funder

National Institutes of Health

Chun Foundation

Jean Epstein Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3