Recognition of rare antinuclear antibody patterns based on a novel attention-based enhancement framework

Author:

Zeng Junxiang12345,Gao Xiupan12,Gao Limei62,Yu Youyou12,Shen Lisong12345,Pan Xiujun12ORCID

Affiliation:

1. Department of Clinical Laboratory , Xinhua Hospital, School of Medicine, , Shanghai , China

2. Shanghai Jiao Tong University , Xinhua Hospital, School of Medicine, , Shanghai , China

3. Faculty of Medical Laboratory Science , College of Health Science and Technology, , Shanghai , China

4. Shanghai Jiao Tong University School of Medicine , College of Health Science and Technology, , Shanghai , China

5. Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine , Shanghai , China

6. Department of Immunology and Rheumatology , Xinhua Hospital, School of Medicine, , Shanghai , China

Abstract

Abstract Rare antinuclear antibody (ANA) pattern recognition has been a widely applied technology for routine ANA screening in clinical laboratories. In recent years, the application of deep learning methods in recognizing ANA patterns has witnessed remarkable advancements. However, the majority of studies in this field have primarily focused on the classification of the most common ANA patterns, while another subset has concentrated on the detection of mitotic metaphase cells. To date, no prior research has been specifically dedicated to the identification of rare ANA patterns. In the present paper, we introduce a novel attention-based enhancement framework, which was designed for the recognition of rare ANA patterns in ANA-indirect immunofluorescence images. More specifically, we selected the algorithm with the best performance as our target detection network by conducting comparative experiments. We then further developed and enhanced the chosen algorithm through a series of optimizations. Then, attention mechanism was introduced to facilitate neural networks in expediting the learning process, extracting more essential and distinctive features for the target features that belong to the specific patterns. The proposed approach has helped to obtained high precision rate of 86.40%, 82.75% recall, 84.24% F1 score and 84.64% mean average precision for a 9-category rare ANA pattern detection task on our dataset. Finally, we evaluated the potential of the model as medical technologist assistant and observed that the technologist’s performance improved after referring to the results of the model prediction. These promising results highlighted its potential as an efficient and reliable tool to assist medical technologists in their clinical practice.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3