DAmiRLocGNet: miRNA subcellular localization prediction by combining miRNA–disease associations and graph convolutional networks

Author:

Bai Tao12,Yan Ke1ORCID,Liu Bin13ORCID

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology , Beijing 100081 , China

2. School of Mathematics & Computer Science, Yan’an University , Shaanxi 716000 , China

3. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology , Beijing 100081 , China

Abstract

AbstractMicroRNAs (miRNAs) are human post-transcriptional regulators in humans, which are involved in regulating various physiological processes by regulating the gene expression. The subcellular localization of miRNAs plays a crucial role in the discovery of their biological functions. Although several computational methods based on miRNA functional similarity networks have been presented to identify the subcellular localization of miRNAs, it remains difficult for these approaches to effectively extract well-referenced miRNA functional representations due to insufficient miRNA–disease association representation and disease semantic representation. Currently, there has been a significant amount of research on miRNA–disease associations, making it possible to address the issue of insufficient miRNA functional representation. In this work, a novel model is established, named DAmiRLocGNet, based on graph convolutional network (GCN) and autoencoder (AE) for identifying the subcellular localizations of miRNA. The DAmiRLocGNet constructs the features based on miRNA sequence information, miRNA–disease association information and disease semantic information. GCN is utilized to gather the information of neighboring nodes and capture the implicit information of network structures from miRNA–disease association information and disease semantic information. AE is employed to capture sequence semantics from sequence similarity networks. The evaluation demonstrates that the performance of DAmiRLocGNet is superior to other competing computational approaches, benefiting from implicit features captured by using GCNs. The DAmiRLocGNet has the potential to be applied to the identification of subcellular localization of other non-coding RNAs. Moreover, it can facilitate further investigation into the functional mechanisms underlying miRNA localization. The source code and datasets are accessed at http://bliulab.net/DAmiRLocGNet.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3