Single-cell causal network inferred by cross-mapping entropy

Author:

Li Lin12ORCID,Xia Rui123,Chen Wei123,Zhao Qi123,Tao Peng4,Chen Luonan1234ORCID

Affiliation:

1. Key Laboratory of Systems Biology , Center for Excellence in Molecular Cell Science, , Shanghai 200031 , China

2. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Center for Excellence in Molecular Cell Science, , Shanghai 200031 , China

3. University of Chinese Academy of Sciences , Beijing 100049 , China

4. Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Hangzhou 310024 , China

Abstract

Abstract Gene regulatory networks (GRNs) reveal the complex molecular interactions that govern cell state. However, it is challenging for identifying causal relations among genes due to noisy data and molecular nonlinearity. Here, we propose a novel causal criterion, neighbor cross-mapping entropy (NME), for inferring GRNs from both steady data and time-series data. NME is designed to quantify ‘continuous causality’ or functional dependency from one variable to another based on their function continuity with varying neighbor sizes. NME shows superior performance on benchmark datasets, comparing with existing methods. By applying to scRNA-seq datasets, NME not only reliably inferred GRNs for cell types but also identified cell states. Based on the inferred GRNs and further their activity matrices, NME showed better performance in single-cell clustering and downstream analyses. In summary, based on continuous causality, NME provides a powerful tool in inferring causal regulations of GRNs between genes from scRNA-seq data, which is further exploited to identify novel cell types/states and predict cell type-specific network modules.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Special Fund for Science and Technology Innovation Strategy of Guangdong Province

JST Moonshot Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3