Neural Representations of Absolute and Relative Magnitudes in Symbolic and Nonsymbolic Formats

Author:

Bhatia Parnika1ORCID,Longo Léa1,Chesnokova Hanna1,Prado Jérôme1

Affiliation:

1. Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500 Bron, France

Abstract

Abstract Humans differ from other animal species in their unique ability to use symbols to represent numerical information. This ability is thought to emerge from the “neural recycling” of mechanisms supporting nonsymbolic magnitudes in the intraparietal sulcus (IPS), a hypothesis that has been applied to both absolute magnitudes (e.g., whole numbers) and relative magnitudes (e.g., fractions). Yet, evidence for the neuronal recycling hypothesis is inconsistent for absolute magnitudes and scarce for relative magnitudes. Here, we investigated to what extent the neural representations of absolute and relative magnitudes in symbolic and nonsymbolic formats overlap in the IPS. In a functional magnetic resonance imaging (fMRI) adaptation design, 48 adult participants were sequentially presented with lines, whole numbers, line ratios, and fractions that varied (vs. not varied) in magnitudes. Univariate analyses showed that the extent to which IPS mechanisms associated with whole numbers relied on mechanisms associated with lines depended upon participants’ arithmetic fluency. Multivariate analyses revealed that the right IPS encoded differences in format (nonsymbolic vs. symbolic) across both absolute and relative magnitudes. Therefore, IPS activity associated with magnitude processing may depend on the presentation format (nonsymbolic vs. symbolic) more than it depends on the type of magnitude (absolute vs. relative), at least for most adult participants.

Funder

Région Auvergne-Rhône-Alpes- Pack Ambition Recherche

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3