Cortical and subcortical contributions to non-motor inhibitory control: an fMRI study

Author:

Pan Xin12,Wang Zhaoxin13ORCID

Affiliation:

1. East China Normal University Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, , Shanghai , China

2. Psychological Counseling Center , Shanghai University, Shanghai , China

3. Shanghai Changning Mental Health Center , Shanghai , China

Abstract

Abstract Inhibition is a core executive cognitive function. However, the neural correlates of non-motor inhibitory control are not well understood. We investigated this question using functional Magnetic Resonance Imaging (fMRI) and a simple Count Go/NoGo task (n = 23), and further explored the causal relationships between activated brain regions. We found that the Count NoGo task activated a distinct pattern in the subcortical basal ganglia, including bilateral ventral anterior/lateral nucleus of thalamus (VA/VL), globus pallidus/putamen (GP/putamen), and subthalamic nucleus (STN). Stepwise regressions and mediation analyses revealed that activations in these region(s) were modulated differently by only 3 cortical regions i.e. the right inferior frontal gyrus/insula (rIFG/insula), along with left IFG/insula, and anterior cingulate cortex/supplementary motor area (ACC/SMA). The activations of bilateral VA/VL were modulated by both rSTN and rIFG/insula (with rGP/putamen as a mediator) independently, and the activation of rGP/putamen was modulated by ACC/SMA, with rIFG/insula as a mediator. Our findings provide the neural correlates of inhibitory control of counting and causal relationships between them, and strongly suggest that both indirect and hyperdirect pathways of the basal ganglia are involved in the Count NoGo condition.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3