Serotonergic Modulation of Spontaneous and Evoked Transmitter Release in Layer II Pyramidal Cells of Rat Somatosensory Cortex

Author:

Agahari Fransiscus Adrian123,Stricker Christian1

Affiliation:

1. Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Acton ACT 2601, Australia

2. Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8787, Japan

3. Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan

Abstract

AbstractAs axons from the raphe nuclei densely innervate the somatosensory cortex, we investigated how serotonin (5-HT) modulates transmitter release in layer II pyramidal cells of rat barrel cortex. In the presence of tetrodotoxin and gabazine, 10 μM 5-HT caused a waxing and waning in the frequency of miniature excitatory postsynaptic currents (mEPSC) with no effect on amplitude. Specifically, within 15 min of recording the mEPSC frequency initially increased by 28 ± 7%, then dropped to below control (−15 ± 3%), before resurging back to 27 ± 7% larger than control. These changes were seen in 47% of pyramidal cells (responders) and were mediated by 5-HT2C receptors (5-HT2CR). Waxing resulted from phospholipase C activation, IP3 production, and Ca2+ release from presynaptic stores. Waning was prevented if PKC was blocked. In contrast, in paired recordings, the unitary EPSC amplitude was reduced by 50 ± 3% after 5-HT exposure in almost all cases with no significant effect on paired-pulse ratio and synaptic dynamics. This sustained EPSC reduction was also caused by 5-HT2R, but was mediated by presynaptic Gβγ subunits likely limiting influx through CaV2 channels. EPSC reduction, together with enhanced spontaneous noise in a restricted subset of inputs, could temporarily diminish the signal-to-noise ratio and affect the computation in the neocortical microcircuit.

Funder

International Postgraduate Research Scholarship

John Curtin School of Medical Research to Fransiscus Adrian Agahari

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3