Increased functional connectivity between the auditory cortex and the frontoparietal network compensates for impaired visuomotor transformation after early auditory deprivation

Author:

Song Li1,Wang Pengfei1,Li Hui1,Weiss Peter H23,Fink Gereon R23,Zhou Xiaolin4,Chen Qi12

Affiliation:

1. Center for Studies of Psychological Application and School of Psychology, South China Normal University , Guangzhou 510631 , China

2. Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich , Wilhelm-Johnen-Strasse, Jülich 52428 , Germany

3. Department of Neurology, University Hospital Cologne, Cologne University , Cologne 509737 , Germany

4. Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University , Shanghai 200062 , China

Abstract

Abstract Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.

Funder

Natural Science Foundation of China

MOE Project of Key Research Institute of Humanities and Social Sciences in Universities

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3