Neuronal composition of processing modules in human V1: laminar density for neuronal and non-neuronal populations and a comparison with macaque

Author:

Garcia-Marin Virginia1ORCID,Kelly Jenna G2,Hawken Michael J2

Affiliation:

1. York College, City University of New York , Jamaica, NY 11451 , United States

2. Center for Neural Science, New York University , New York City, NY 10003 , United States

Abstract

Abstract The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure–function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3