Overlapping Anatomical Networks Convey Cross-Modal Suppression in the Sighted and Coactivation of “Visual” and Auditory Cortex in the Blind

Author:

Anurova Irina12,Carlson Synnöve34,Rauschecker Josef P25

Affiliation:

1. Helsinki Institute of Life Science, Neuroscience Center, University of Helsinki, Helsinki 00014, Finland

2. Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA

3. Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland

4. Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland

5. Institute for Advanced Study, Technical University of Munich, Munich 85748, Germany

Abstract

Abstract In the present combined DTI/fMRI study we investigated adaptive plasticity of neural networks involved in controlling spatial and nonspatial auditory working memory in the early blind (EB). In both EB and sighted controls (SC), fractional anisotropy (FA) within the right inferior longitudinal fasciculus correlated positively with accuracy in a one-back sound localization but not sound identification task. The neural tracts passing through the cluster of significant correlation connected auditory and “visual” areas in the right hemisphere. Activity in these areas during both sound localization and identification correlated with FA within the anterior corpus callosum, anterior thalamic radiation, and inferior fronto-occipital fasciculus. In EB, FA in these structures correlated positively with activity in both auditory and “visual” areas, whereas FA in SC correlated positively with activity in auditory and negatively with activity in visual areas. The results indicate that frontal white matter conveys cross-modal suppression of occipital areas in SC, while it mediates coactivation of auditory and reorganized “visual” cortex in EB.

Funder

National Institutes of Health

National Science Foundation

Academy of Finland

German Excellence Initiative

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3