Camel spider trait evolution demonstrates repeated patterns of convergence (Arachnida: Solifugae: Eremobatidae)

Author:

Garcia Erika L12ORCID,Hansen Quincy G23,Cushing Paula E12

Affiliation:

1. University of Colorado–Denver , 1201 Larimer Street, Denver, CO 80204 , USA

2. Denver Museum of Nature and Science , 2001 Colorado Boulevard, Denver, CO 80205 , USA

3. Colorado State University, Department of Biology , 711 Oval Drive, Fort Collins, CO 80521 , USA

Abstract

Abstract Morphology has long been used to classify and identify living organisms. However, taxonomic descriptions are often limited to qualitative descriptions of size and shape, making identification difficult due to the subjective language used to describe complex shapes. Additionally, for some taxa, there are few reliable qualitative characters available for delimitation that have yet to be tested objectively in a phylogenetic context. Solifugae is one such example. The order, Solifugae, is recognized from the other arachnid orders by the possession of large, powerful jaws or chelicerae. Male cheliceral morphology is the leading diagnostic character system in solifuge systematics and is the basis for much of solifuge current taxonomy. Female chelicerae, on the other hand, are reportedly deeply conserved and much of the species identification is based on female operculum morphology. To elucidate patterns of chelicerae and opercula trait evolution within the solifuge family, Eremobatidae, we used a 2-dimenstional morphological analysis using an Elliptical Fourier approach for closed outlines, in addition to an analysis of traditionally used measures in a phylogenetic context. Using ancestral state reconstruction and ultra-conserved elements, we assessed the taxonomic utility of female cheliceral and opercular morphology, and we evaluated which male morphological characters reflect shared, derived ancestry. Investigation into ubiquitously used character sets, in addition to newly proposed characters herein, illustrates the complex evolution of traits with high levels of convergence. Our results provide taxonomic insight into future, higher level taxonomic revisions of Eremobatidae.

Publisher

Oxford University Press (OUP)

Reference99 articles.

1. A method for testing the assumption of phylogenetic independence in comparative data;Abouheif;Evol Ecol Res,1999

2. A new species of sun-spider from sand dunes in Coahuila, Mexico (Arachnida: Solifugae: Eremobatidae);Ballesteros;Zootaxa,2008

3. Cheliceral morphology in solifugae (Arachnida): Primary homology, terminology, and character survey;Bird;Bulletin Am Museum Nat History,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3