Longevity pathways are associated with human ovarian ageing

Author:

Smits Myrthe A J1ORCID,Janssens Georges E2,Goddijn Mariëtte1,Hamer Geert1ORCID,Houtkooper Riekelt H2,Mastenbroek Sebastiaan1

Affiliation:

1. Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands

2. Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Abstract STUDY QUESTION Are genes known to be involved in somatic cell ageing, particularly related to longevity pathways, associated with the accelerated ageing process of the ovary? SUMMARY ANSWER Growth, metabolism, and cell-cycle progression-related pathways that are involved in somatic cell ageing are also associated with ovarian ageing. WHAT IS KNOWN ALREADY Ovarian ageing is characterized by a gradual decline in ovarian follicle quantity, a decline in oocyte quality, and lower chances of pregnancy. Genetic pathways modulating the rate of somatic cell ageing have been researched intensively. Ovarian ageing does not follow the same timeline as somatic cell ageing, as signs of ovarian ageing occur at a younger female age, while the somatic cells are still relatively young. It is not known whether the generally recognized somatic cell longevity genes also play a role during ovarian ageing. Looking at somatic cell longevity genes can lead to new hypotheses and possible treatment options for subfertility caused by ovarian ageing. STUDY DESIGN, SIZE, DURATION In this observational study, we analysed a dataset of individual gene expression profiles of 38 germinal vesicle (GV) oocytes from 38 women aged between 25 and 43 years. We correlated female age (calendar age in years) and biological age (factors known to be associated with ovarian ageing such as dosage of FSH needed for ovarian hyperstimulation, and antral follicle count (AFC)) with gene expression signatures of longevity pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS Transcripts of 38 GV oocytes were used for individual gene expression analysis. R version 3.5.1 was used to process and analyse data. The GeneAge database (build 19) was used to obtain mouse ageing-related genes. Human to mouse orthologues were obtained using the R package biomaRt. Correlations and significance between gene expression data and age were tested for using Pearson's product moment correlation coefficient using ranked expression data. Distributions were compared with an ANOVA, and the Tukey Honest Significant Difference method was used to control for the Type I error rate across multiple comparisons. MAIN RESULTS AND THE ROLE OF CHANCE Of the 136 genes in the GeneAge database, the expression of 15 anti-longevity genes identified in oocytes showed a positive correlation with female calendar age and FSH dosage administered during ICSI treatment, and a negative correlation with AFC. Expression of 32 pro-longevity genes was negatively correlated with calendar age and FSH dosage, and positively correlated with AFC. In general, anti- and pro-longevity genes changed in opposing directions with advancing maternal age in oocytes. Notably, the anti-longevity genes include many ‘growth’-related genes involved in the mechanistic target of rapamycin (mTOR) Complex 1 pathway, such as EIF5A2, EIF3H, EIF4E, and mTOR. The pro-longevity genes include many cell-cycle progression-related genes involved in DNA damage repair (e.g. XRCC6, ERCC2, and MSH2) or cell-cycle checkpoint regulation genes (e.g. ATM, BRCA1, TP53, TP63, TP73, and BUB1B). LIMITATIONS, REASONS FOR CAUTION Using mature oocytes instead of GV-stage oocytes discarded from ICSI treatments may provide different results. No correction for multiple testing was carried out on individual genes because a small set of longevity-related genes was selected a priori for the analysis. The global trend was corrected for multiple testing and remained significant. This work was an observational study and, as no additional experimental work was performed, the associations described do not directly demonstrate the involvement of such genes in oocyte ageing. WIDER IMPLICATIONS OF THE FINDINGS Growth, metabolism, and cell-cycle progression-related pathways that are known to be involved in somatic cell ageing were associated with ovarian ageing. If experimental data are obtained to support these associations, we suggest that interventions known to modulate these processes could benefit women suffering from ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S) G.E.J. is supported by a VENI grant from ZonMw (https://www.zonmw.nl). Work in the Houtkooper group is financially supported by an ERC Starting grant (No. 638290), a VIDI grant from ZonMw (No. 91715305), and the Velux Stiftung (No. 1063). M.G. declares several research and educational grants from Guerbet, Merck and Ferring (all location VUmc), outside the scope of the submitted work. The other authors report no competing interest TRIAL REGISTRATION NUMBER N/A.

Funder

VENI

ZonMw

ERC

Velux Stiftung

Publisher

Oxford University Press (OUP)

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3