A single-cell map for the transcriptomic signatures of peripheral blood mononuclear cells in end-stage renal disease

Author:

Luo Ting1,Zheng Fengping2,Wang Kang2,Xu Yong2,Xu Huixuan2,Shen Wenxi2,Zhu Chengxin2,Zhang Xinzhou2,Sui Weiguo3,Tang Donge2,Yin Lianghong1,Dai Yong12

Affiliation:

1. Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China

2. The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China

3. Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin NO. 924 Hospital, Guilin, China

Abstract

Abstract Background Immune aberrations in end-stage renal disease (ESRD) are characterized by systemic inflammation and immune deficiency. The mechanistic understanding of this phenomenon remains limited. Methods We generated 12 981 and 9578 single-cell transcriptomes of peripheral blood mononuclear cells (PBMCs) that were pooled from 10 healthy volunteers and 10 patients with ESRD by single-cell RNA sequencing. Unsupervised clustering and annotation analyses were performed to cluster and identify cell types. The analysis of hallmark pathway and regulon activity was performed in the main cell types. Results We identified 14 leukocytic clusters that corresponded to six known PBMC types. The comparison of cells from ESRD patients and healthy individuals revealed multiple changes in biological processes. We noticed an ESRD-related increase in inflammation response, complement cascade and cellular metabolism, as well as a strong decrease in activity related to cell cycle progression in relevant cell types in ESRD. Furthermore, a list of cell type-specific candidate transcription factors (TFs) driving the ESRD-associated transcriptome changes was identified. Conclusions We generated a distinctive, high-resolution map of ESRD-derived PBMCs. These results revealed cell type-specific ESRD-associated pathways and TFs. Notably, the pooled sample analysis limits the generalization of our results. The generation of larger single-cell datasets will complement the current map and drive advances in therapies that manipulate immune cell function in ESRD.

Funder

Guangxi Key Laboratory of Metabolic Diseases Research

National Natural Science Foundation of China

Project Plan Document of Guangxi Key Laboratory Construction

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3