Rectifiability of Flat Singular Points for Area-Minimizing mod 2Q Hypercurrents

Author:

Skorobogatova Anna1

Affiliation:

1. Department of Mathematics , Fine Hall, Princeton University, Washington Road, Princeton, NJ 08540, USA

Abstract

Abstract Consider an $ m $-dimensional area minimizing mod$ (2Q) $ current $ T $, with $ Q\in {\mathbb {N}} $, inside a sufficiently regular Riemannian manifold of dimension $ m + 1 $. We show that the set of singular density-$ Q $ points with a flat tangent cone is $ (m-2) $-rectifiable. This complements the thorough structural analysis of the singularities of area-minimizing hypersurfaces modulo $ p $ that has been completed in the series of works of De Lellis–Hirsch–Marchese–Stuvard and De Lellis–Hirsch–Marchese–Stuvard–Spolaor, and the work of Minter–Wickramasekera.

Publisher

Oxford University Press (OUP)

Reference25 articles.

1. Boundary regularity of mass-minimizing integral currents and a question of Almgren;De Lellis;MATRIX Ann.,2017

2. Area-minimizing currents mod 2Q: linear regularity theory;De Lellis;Comm. Pure Appl. Math.,2020

3. Regularity of area minimizing currents $\textrm {mod} p$;De Lellis;Geom. Funct. Anal.,2020

4. Area minimizing hypersurfaces modulo $p$: a geometric free-boundary problem;De Lellis,2021

5. Fine structure of the singular set of area minimizing hypersurfaces modulo $p$;De Lellis,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3