Trend to Equilibrium for Flows With Random Diffusion
Author:
Affiliation:
1. Department of Mathematics, Massachusetts Institute of Technology , Cambridge, MA 02139, USA
2. Department of Mathematical Sciences, Carnegie Mellon University , Pittsburgh, PA 15213, USA
Abstract
Publisher
Oxford University Press (OUP)
Link
https://academic.oup.com/imrn/article-pdf/2024/10/8764/57728725/rnae013.pdf
Reference96 articles.
1. Global existence and analyticity for the 2D Kuramoto–Sivashinsky equation;Ambrose;J. Dynam. Differential Equations,2019
2. Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices;Ambrosio;Ann. Inst. Henri Poincaré. Anal. Non Linéaire,2011
3. A gradient flow approach to an evolution problem arising in superconductivity;Ambrosio;Comm. Pure Appl. Math.,2008
4. Gevrey regularity for a class of dissipative equations with analytic nonlinearity;Bae;Methods Appl. Anal.,2015
5. Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces;Bae;Arch. Rational Mech. Anal.,2012
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3