Affiliation:
1. Department of Radiology and Biomedical Imaging, University of California San Francisco , San Francisco, California , USA
Abstract
Abstract
Background
Telomere maintenance by telomerase reverse transcriptase (TERT) is essential for immortality in most cancers, including oligodendrogliomas. Agents that disrupt telomere maintenance such as the telomere uncapping agent 6-thio-2’-deoxyguanosine (6-thio-dG) are in clinical trials. We previously showed that TERT expression in oligodendrogliomas is associated with upregulation of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). We also showed that hyperpolarized δ-[1-13C]-gluconolactone metabolism to 6-phosphogluconate (6-PG) can be used to probe the PPP in glioblastomas. The goal of this study was to determine whether hyperpolarized 13C imaging using δ-[1-13C]-gluconolactone can monitor TERT expression and response to 6-thio-dG in oligodendrogliomas.
Methods
We examined patient-derived oligodendroglioma cells and orthotopic tumors to assess the link between TERT and hyperpolarized δ-[1-13C]-gluconolactone metabolism. We performed in vivo imaging to assess the ability of hyperpolarized δ-[1-13C]-gluconolactone to report on TERT and response to 6-thio-dG in rats bearing orthotopic oligodendrogliomas in vivo.
Results
Doxycycline-inducible TERT silencing abrogated 6-PG production from hyperpolarized δ-[1-13C]-gluconolactone in oligodendroglioma cells, consistent with the loss of G6PD activity. Rescuing TERT expression by doxycycline removal restored G6PD activity and, concomitantly, 6-PG production. 6-PG production from hyperpolarized δ-[1-13C]-gluconolactone demarcated TERT-expressing tumor from surrounding TERT-negative normal brain in vivo. Importantly, 6-thio-dG abrogated 6-PG production at an early timepoint preceding MRI-detectable alterations in rats bearing orthotopic oligodendrogliomas in vivo.
Conclusions
These results indicate that hyperpolarized δ-[1-13C]-gluconolactone reports on TERT expression and early response to therapy in oligodendrogliomas. Our studies identify a novel agent for imaging tumor proliferation and treatment response in oligodendroglioma patients.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Surgery,Oncology,Neurology (clinical)