Groundwater fauna in an urban area – natural or affected?

Author:

Koch FabienORCID,Menberg KathrinORCID,Schweikert Svenja,Spengler Cornelia,Hahn Hans Jürgen,Blum PhilippORCID

Abstract

Abstract. In Germany, 70 % of the drinking water demand is met by groundwater, for which the quality is the product of multiple physical–chemical and biological processes. As healthy groundwater ecosystems help to provide clean drinking water, it is necessary to assess their ecological conditions. This is particularly true for densely populated urban areas, where faunistic groundwater investigations are still scarce. The aim of this study is, therefore, to provide a first assessment of the groundwater fauna in an urban area. Thus, we examine the ecological status of an anthropogenically influenced aquifer by analysing fauna in 39 groundwater monitoring wells in the city of Karlsruhe (Germany). For classification, we apply the groundwater ecosystem status index (GESI), in which a threshold of more than 70 % of crustaceans and less than 20 % of oligochaetes serves as an indication for very good and good ecological conditions. Our study reveals that only 35 % of the wells in the residential, commercial and industrial areas and 50 % of wells in the forested area fulfil these criteria. However, the study did not find clear spatial patterns with respect to land use and other anthropogenic impacts, in particular with respect to groundwater temperature. Nevertheless, there are noticeable differences in the spatial distribution of species in combination with abiotic groundwater characteristics in groundwater of the different areas of the city, which indicate that a more comprehensive assessment is required to evaluate the groundwater ecological status in more detail. In particular, more indicators, such as groundwater temperature, indicator species, delineation of site-specific characteristics and natural reference conditions should be considered.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference99 articles.

1. Aber, J., Mcdowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Mcnulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems – Hypotheses revisited, Bioscience, 48, 921–934, 1998.

2. Amt für Stadtentwicklung – Statistikstelle: Statistic Atlas Karlsruhe, available at: https://web3.karlsruhe.de/Stadtentwicklung/statistik/atlas/?select=005 (last access: 27 February 2019), 2018.

3. Batzer, D. and Boix, D.: Invertebrates in Freswater Wetlands: An International Perspective on their Ecology, Springer International Publishing, Heidelberg, 2016.

4. Benz, S., Bayer, P., Menberg, K., and Blum, P.: Comparison of local and regional heat transport processes into the subsurface urban heat island of Karlsruhe, Germany, Geophys. Res. Abstr. EGU Gen. Assem., 16, 11252, 2014.

5. Benz, S., Bayer, S., and Blum, P.: Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany, Sci. Total Environ., 584–584, 145–153, 2017.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3