The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO

Author:

Coburn S.,Dix B.,Sinreich R.,Volkamer R.

Abstract

Abstract. We designed and assembled the University of Colorado Ground Multi AXis Differential Optical Absorption Spectroscopy (CU GMAX-DOAS) instrument to retrieve bromine oxide (BrO), iodine oxide (IO), formaldehyde (HCHO), glyoxal (CHOCHO), nitrogen dioxide (NO2) and the oxygen dimer (O4) in the coastal atmosphere of the Gulf of Mexico. The detection sensitivity of DOAS measurements is proportional to the root mean square (RMS) of the residual spectrum that remains after all absorbers have been subtracted. Here we describe the CU GMAX-DOAS instrument and demonstrate that the hardware is capable of attaining RMS of ∼6 × 10−6 from solar stray light noise tests using high photon count spectra (compatible within a factor of two with photon shot noise). Laboratory tests revealed two critical instrument properties that, in practice, can limit the RMS: (1) detector non-linearity noise, RMSNLin, and (2) temperature fluctuations that cause variations in optical resolution (full width at half the maximum, FWHM, of atomic emission lines) and give rise to optical resolution noise, RMSFWHM. The non-linearity of our detector is low (∼10−2) yet – unless actively controlled – is sufficiently large to create RMSNLin of up to 2 × 10−4. The optical resolution is sensitive to temperature changes (0.03 detector pixels °C−1 at 334 nm), and temperature variations of 0.1°C can cause RMSFWHM of ~1 × 10−4. Both factors were actively addressed in the design of the CU GMAX-DOAS instrument. With an integration time of 60 s the instrument can reach RMS noise of 3 × 10−5, and typical RMS in field measurements ranged from 6 × 10−5 to 1.4 × 10−4. The CU GMAX-DOAS was set up at a coastal site near Pensacola, Florida, where we detected BrO, IO and CHOCHO in the marine boundary layer (MBL), with daytime average tropospheric vertical column densities (average of data above the detection limit), VCDs, of ∼2 × 1013 molec cm−2, 8 × 1012 molec cm−2 and 4 × 1014 molec cm−2, respectively. HCHO and NO2 were also detected with typical MBL VCDs of 1 × 1016 and 3 × 1015 molec cm−2. These are the first measurements of BrO, IO and CHOCHO over the Gulf of Mexico. The atmospheric implications of these observations for elevated mercury wet deposition rates in this area are briefly discussed. The CU GMAX-DOAS has great potential to investigate RMS-limited problems, like the abundance and variability of trace gases in the MBL and possibly the free troposphere (FT).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference67 articles.

1. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, http://dx.doi.org/10.5194/acp-7-981-2007https://doi.org/10.5194/acp-7-981-2007, 2007.

2. Avila, G., Fernandez, J. M., Mate, B., Tejeda, G., and Montero, S.: Ro-vibrational Raman cross sections of water vapor in the OH stretching region, J. Mol. Spectrosc., 196, 77–92, https://doi.org/10.1006/jmsp.1999.7854, 1999.

3. Avila, G., Tejeda, G., Fernandez, J. M., and Montero, S.: The rotational Raman spectra and cross sections of H2O, D2O, and HDO, J. Mol. Spectrosc., 220, 259–275, https://doi.org/10.1016/S0022-2852(03)00123-1, 2003

4. Balabanov, N. B. and Peterson, K. A.: Mercury and reactive halogens: The thermochemistry of Hg+{{}Cl2, Br2, BrCl, ClO, and BrO{}}, J. Phys. Chem. A, 107, 7465–7470, https://doi.org/10.1021/jp035547p, 2003.

5. Bendtsen, J.: The rotational and rotation-vibrational Raman spectra of 14N2, $^{14}N^{15}$N, and 15N2, J. Raman Spectrosc., 2, 133–145, https://doi.org/ 10.1002/jrs.1250020204, 1974.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3