The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland
-
Published:2022-06-10
Issue:11
Volume:22
Page:7557-7573
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Brunner CyrilORCID, Brem Benjamin T.ORCID, Collaud Coen Martine, Conen FranzORCID, Steinbacher MartinORCID, Gysel-Beer MartinORCID, Kanji Zamin A.ORCID
Abstract
Abstract. Cloud radiative properties, cloud lifetime, and precipitation initiation are strongly influenced by the cloud phase. Between ∼ 235 and 273 K, ice-nucleating particles (INPs) are responsible for the initial phase transition from the liquid to the ice phase in cloud hydrometeors.
This study analyzes immersion-mode INP concentrations measured at 243 K at the High Altitude Research Station Jungfraujoch (3580 m a.s.l.) between February 2020 and January 2021, thereby presenting the longest continuous, high-resolution (20 min) data set of online INP measurements to date. The high time resolution and continuity allow us to study the seasonal and the diurnal variability of INPs.
After exclusion of special events, like Saharan dust events (SDEs), we found a seasonal cycle of INPs, highest in April (median in spring 3.1 INP std L−1) followed by summer (median:
1.6 INP std L−1) and lowest in fall and winter (median: 0.5 and 0.7 INP std L−1, respectively). Pollen or subpollen particles were deemed unlikely to be responsible for elevated INP concentrations in spring and summer, as periods with high pollen loads from nearby measurement stations do not coincide with the periods of high INP concentrations. Furthermore, for days when the site was purely in the free troposphere (FT), no diurnal cycle in INP concentrations was observed, while days with boundary layer intrusions (BLIs) showed a diurnal cycle. The seasonal and diurnal variability of INPs during periods excluding SDEs is within a factor of 7 and 3.3, respectively, significantly lower than the overall variability observed in INP concentration including SDEs of more than 3 orders of magnitude, when peak values result from SDEs. The median INP concentration over the analyzed 12 months was 1.2 INP std L−1 for FT periods excluding SDEs and 1.4 INP std L−1 for both FT and BLI, and including SDEs, reflecting that despite SDEs showing strong but comparatively brief INP signals, they have a minor impact on the observed annual median INP concentration.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Staatssekretariat für Bildung, Forschung und Innovation Horizon 2020 Framework Programme
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference51 articles.
1. Bader, S., Collaud Coen, M., Duguay-Tetzlaff, A., Frei, C., Fukutome, S., Gehrig, R., Maillard Barras, E., Martucci, G., Romanens, G., Scherrer, S., Schlegel, T., Spirig, C., Stübi, R., Vuilleumier, L., and Zubler, E.: MeteoSchweiz 2021: Klimareport 2020, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich, 96 pp., ISSN 2296-1488, 2021. a 2. Bi, K., McMeeking, G. R., Ding, D. P., Levin, E. J., DeMott, P. J., Zhao,
D. L., Wang, F., Liu, Q., Tian, P., Ma, X. C., Chen, Y. B., Huang, M. Y.,
Zhang, H. L., Gordon, T. D., and Chen, P.: Measurements of Ice Nucleating
Particles in Beijing, China, J. Geophys. Res.-Atmos.,
124, 8065–8075, https://doi.org/10.1029/2019JD030609, 2019. a 3. Boose, Y., Kanji, Z. A., Kohn, M., Sierau, B., Zipori, A., Crawford, I., Lloyd, G., Bukowiecki, N., Herrmann, E., Kupiszewski, P., Steinbacher, M., and Lohmann, U.: Ice Nucleating Particle Measurements at 241 K during Winter Months at 3580 m MSL in the Swiss Alps, J. Atmos. Sci., 73, 2203–2228, https://doi.org/10.1175/JAS-D-15-0236.1, 2016. a 4. Brunner, C. and Kanji, Z. A.: Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto), Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021, 2021. a, b, c, d 5. Brunner, C., Brem, B. T., Collaud Coen, M., Conen, F., Hervo, M., Henne, S., Steinbacher, M., Gysel-Beer, M., and Kanji, Z. A.: The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland, Atmos. Chem. Phys., 21, 18029–18053, https://doi.org/10.5194/acp-21-18029-2021, 2021. a, b, c, d, e, f, g, h, i
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|