Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis

Author:

Xing ChengzhiORCID,Liu ChengORCID,Ye ChunxiangORCID,Xue Jingkai,Wu Hongyu,Ji Xiangguang,Ou Jinping,Hu Qihou

Abstract

Abstract. The Tibetan Plateau (TP) plays a key role in the regional environment and global climate change; however, the lack of vertical observations of atmospheric species, such as HONO and O3, hinders a deeper understanding of the atmospheric chemistry and atmospheric oxidation capacity (AOC) on the TP. In this study, we conducted multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at Nam Co, the central TP, to observe the vertical profiles of aerosol, water vapor (H2O), NO2, HONO and O3 from May to July 2019. In addition to NO2 mainly exhibiting a Gaussian shape with the maximum value appearing at 300=-400 m, the other four species all showed an exponential shape and decreased with the increase in height. The maximum values of monthly averaged aerosol (0.17 km−1) and O3 (66.71 ppb) occurred in May, H2O (3.68 × 1017 molec. cm−3) and HONO (0.13 ppb) appeared in July, and NO2 (0.39 ppb) occurred in June at the 200–400 m layer. H2O, HONO and O3 all exhibited a multi-peak pattern, and aerosol appeared to have a bi-peak pattern for its averaged diurnal variations. The averaged vertical profiles of OH production rates from O3 and HONO all exhibited an exponential shape decreasing with the increase in height, with maximum values of 2.61 and 0.49 ppb h−1 at the bottom layer, respectively. The total OH production rate contributed by HONO and O3 on the TP was obviously larger than that in low-altitude areas. In addition, source analysis was conducted for HONO and O3 at different height layers. The heterogeneous reaction of NO2 on wet surfaces was a significant source of HONO. The maximum values of HONO/NO2 appeared when H2O concentrations were approximately 1.0 × 1017 molec. cm−3 and aerosol concentrations were larger than 0.15 km−1 below 1.0 km. The maximum values were usually accompanied by H2O concentrations of 1.0–2.0 × 1017 molec. cm−3 and aerosol concentrations greater than 0.02 km−1 at 1.0–2.0 km. O3 was potentially sourced from the South Asian subcontinent and Himalayas through long-range transport. Our results contribute to the new understanding of vertical distribution of atmospheric components and explain the strong AOC on the TP.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Reference137 articles.

1. Aliwell, S. R., Van Roozendael, M., Johnston, P. V., Richter, A., Wagner, T., Arlander, D. W., Burrows, J. P., Fish, D. J., Jones, R. L., Tørnkvist, K. K., Lambert, J. C., Pfeilsticker, K., and Pundt, I.: Analysis for BrO in zenith-sky spectra: an intercomparison exercise for analysis improvement, J. Geophys. Res., 107, ACH 10-1–ACH 10-20, https://doi.org/10.1029/2001JD000329, 2002.

2. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.

3. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jan., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.

4. Bi, H., Chen, S., Zhao, D., Lu, F., Chen, Y., and Guan, Y.: Aerosol optical properties and its direct radiative forcing over Tibetan Plateau from 2006 to 2017, Particuology, 74, 64–73, https://doi.org/10.1016/j.partic.2022.05.007, 2023.

5. Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The State and Fate of Himalayan Glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3