On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations

Author:

Kuhn Leon,Beirle SteffenORCID,Kumar VinodORCID,Osipov SergeyORCID,Pozzer AndreaORCID,Bösch TimORCID,Kumar RajeshORCID,Wagner Thomas

Abstract

Abstract. We present WRF-Chem simulations over central Europe with a spatial resolution of 3 km × 3 km and focus on nitrogen dioxide (NO2). A regional emission inventory issued by the German Environmental Agency, with a spatial resolution of 1 km × 1 km, is used as input. We demonstrate by comparison of five different model setups that significant improvements in model accuracy can be achieved by choosing the appropriate boundary layer scheme, increasing vertical mixing strength, and/or tuning the temporal modulation of the emission data (“temporal profiles”) driving the model. The model setup with improved vertical mixing is shown to produce the best results. Simulated NO2 surface concentrations are compared to measurements from a total of 275 in situ measurement stations in Germany, where the model was able to reproduce average noontime NO2 concentrations with a bias of ca. −3 % and R=0.74. The best agreement is achieved when correcting for the presumed NOy cross sensitivity of the molybdenum-based in situ measurements by computing an NOy correction factor from modelled peroxyacetyl nitrate (PAN) and nitric acid (HNO3) mixing ratios. A comparison between modelled NO2 vertical column densities (VCDs) and satellite observations from TROPOMI (TROPOspheric Monitoring Instrument) is conducted with averaging kernels taken into account. Simulations and satellite observations are shown to agree with a bias of +5.5 % and R=0.87 for monthly means. Lastly, simulated NO2 concentration profiles are compared to noontime NO2 profiles obtained from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at five locations in Europe. For stations within Germany, average biases of −25.3 % to +12.0 % were obtained. Outside of Germany, where lower-resolution emission data were used, biases of up to +50.7 % were observed. Overall, the study demonstrates the high sensitivity of modelled NO2 to the mixing processes in the boundary layer and the diurnal distribution of emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3