EVALUATION OF HIGH RESOLUTION URBAN LULC FOR SEASONAL FORECASTS OF URBAN CLIMATE USING WRF MODEL

Author:

Bhavana M.,Gupta K.,Pal P. K.,Kumar A. S.,Gummapu J.

Abstract

Abstract. In all mesoscale models with urban parameterizations, urban area represented as a single entity to represent the influence of urban morphology. In the last few years, many Urban Canopy Models (UCM) have been developed by many researchers to model the urban energy fluxes, but their spatial resolution is too coarse. These models proves to be a hindrance in obtaining improved results for urban climatic studies due to their coarser resolution. So downscaling of climatic variables in an urban area is primary significance for urban climatic studies. Weather Research Forecasting Model (WRF) is the one of the models that has been used widely for downscaling the climatic variables at urban scale and it has been also integrated with UCM along with a number of urban sub physics options. In this study, modified high resolution Land Use Land Cover (LULC) representing three urban classes for the city of Chandigarh has been ingested into the model to examine and validate the model output with respect to ground observations. The model has been configured with two domains with a resolution of 3KM and 1KM and simulations were carried out for three days of the of four seasons of India, winter, summer, monsoon and post-monsoon for the analysis of seasonal variation. Improved values of Root Mean Square Error (RMSE) for surface temperature, relative humidity and wind speed was observed with modified high resolution LULC with BEM option as compared to single urban built up class. In terms of temperature, summer season showed very less RMSE than other seasons, i.e, 0.76 °C and . In terms of relative humidity, monsoon season showed very less RMSE than other seasons, i.e., 2.63% and in terms of wind speed, post monsoon season is giving less RMSE i.e., 1.01 m/s.

Publisher

Copernicus GmbH

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3