Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water
-
Published:2023-04-27
Issue:8
Volume:23
Page:4903-4929
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Chylik JanORCID, Chechin Dmitry, Dupuy Regis, Kulla Birte S.ORCID, Lüpkes ChristofORCID, Mertes Stephan, Mech MarioORCID, Neggers Roel A. J.ORCID
Abstract
Abstract. Springtime Arctic mixed-phase convection over open water in the Fram Strait as observed during the recent ACLOUD (Arctic CLoud Observations Using airborne measurements during polar Day) field campaign is simulated at turbulence-resolving resolutions. The first objective is to assess the skill of large-eddy simulation (LES) in reproducing the observed mixed-phase convection. The second goal is to then use the model to investigate how aerosol modulates the way in which turbulent mixing and clouds transform the low-level air mass. The focus lies on the low-level thermal structure and lapse rate, the heating efficiency of turbulent entrainment, and the low-level energy budget. A composite case is constructed based on data collected by two research aircraft on 18 June 2017. Simulations are evaluated against independent datasets, showing that the observed thermodynamic, cloudy, and turbulent states are well reproduced. Sensitivity tests on cloud condensation nuclei (CCN) concentration are then performed, covering a broad range between pristine polar and polluted continental values. We find a significant response in the resolved mixed-phase convection, which is in line with previous LES studies. An increased CCN substantially enhances the depth of convection and liquid cloud amount, accompanied by reduced surface precipitation. Initializing with the in situ CCN data yields the best agreement with the cloud and turbulence observations, a result that prioritizes its measurement during field campaigns for supporting high-resolution modeling efforts. A deeper analysis reveals that CCN significantly increases the efficiency of radiatively driven entrainment in warming the boundary layer. The marked strengthening of the thermal inversion plays a key role in this effect. The low-level heat budget shifts from surface driven to radiatively driven. This response is accompanied by a substantial reduction in the surface energy budget, featuring a weakened flow of solar radiation into the ocean. Results are interpreted in the context of air–sea interactions, air mass transformations, and climate feedbacks at high latitudes.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference105 articles.
1. Albrecht, B. A., Betts, A. K., Schubert, W. H., and Cox, S. K.: Model of the
thermodynamic structure of the trade-wind boundary layer: Part I. Theoretical
formulation and sensitivity tests, J. Atmos. Sci., 36, 73–89, 1979. a 2. Atkinson, B. W. and Wu Zhang, J.: Mesoscale shallow convection in the
atmosphere, Rev. Geophys., 34, 403–431, https://doi.org/10.1029/96RG02623, 1996. a 3. Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the
midlatitude jet-stream: Can it? Has it? Will it?, WIREs Clim. Change, 6,
277–286, https://doi.org/10.1002/wcc.337, 2015. a 4. Beheng, K. D.: A numerical study on the combined action of droplet coagulation, ice particle riming and the splintering process concerning maritime cumuli, Beit. Phys. Atmos., 55, 201–214, 1982. a, b 5. Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland
melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86,
https://doi.org/10.1038/nature12002, 2013. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|