The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
-
Published:2016-04-07
Issue:2
Volume:7
Page:295-312
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Kessler A., Tjiputra J.ORCID
Abstract
Abstract. Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. We show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) over the 21st century under the high-CO2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. Nevertheless, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO2 fluxes in the SO. The inter-model spread for the contemporary CO2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO2 in December–January. The second group simulates an opposite CO2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. We show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.
Funder
Norges Forskningsråd Seventh Framework Programme
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference68 articles.
1. Arora Vivek, K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C., Christian, J., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J., and Wu, T.: Carbon concentration and carbon–climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289–5314, 2013. 2. Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010. 3. Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, 2011. 4. Bakker, D. C. E., Pfeil, B., Smith, K., et al.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, 2014. 5. Bernardello, R., Marinov, I., Palter, J. B., Galbraith, E. D., and Sarmiento, J. L.: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model, Geophys. Res. Lett., 41, https://doi.org/10.1002/2014GL061313, 2014.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|