Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity
-
Published:2018-03-28
Issue:1
Volume:10
Page:653-676
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Carranza ValerieORCID, Rafiq Talha, Frausto-Vicencio Isis, Hopkins Francesca M.ORCID, Verhulst Kristal R.ORCID, Rao PreetiORCID, Duren Riley M.ORCID, Miller Charles E.
Abstract
Abstract. Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on < 1 % of land area in the region. Currently, Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom–up and top–down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference63 articles.
1. Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., Huang, J., Elvidge, C., and Baugh, K.: A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results, J. Geophys. Res.-Atmos., 119, 17, https://doi.org/10.1002/2013JD021296, 2014. 2. Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G., Joordan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardly, D., and Harriss, R.: Methane Leaks from North American Natural Gas Systems, Science, 343, 733–735, https://doi.org/10.1126/science.1247045, 2014. 3. California Energy Commission (CEC): California Natural Gas Pipeline, available at: https://cecgis-caenergy.opendata.arcgis.com/ (last access: 31 March 2017), 2012. 4. CalRecycle: SWIS Facility/Site Search, available at: http://www.calrecycle.ca.gov/SWFacilities/Directory/Search.aspx, last access: 31 December, 2015. 5. Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R., Stirm, B., Sweeney, C., Montzka, S. A., Gurney, K. R., Spokas, K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K., Turnbull, J., Miller, B. R., Lauvaux, T., Davis, K., Karion, A., Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K., Miles, N., and Richardson, S.: Quantification and source apportionment of the methane emission flux from the city of Indianapolis, Elementa, 3, 37, 2015.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|