Runoff uncertainty associated with global climate model chosen in regional climate modeling

Author:

Ajjur Salah BasemORCID,Al-Ghamdi Sami G.

Abstract

Abstract. Uncertain climatic projections result in uncertain runoff predictions, which lead to unreliable water resources management and floods mitigation measures. This study investigates runoff uncertainty associated with Global Climate Models (GCMs) chosen as boundary conditions in regional climate models (RCMs). To this end, the study projected surface air temperature, precipitation, wind speed, and potential evapotranspiration, over Qatar, from the Massachusetts Institute of Technology (MIT) RCM driven by three GCMs: CCSM4, MPI-ESM, and NorESM. Historical projections were made during 1976–2005 while future projections were made during 2071–2100 under the business-as-usual Representative Concentration Pathways (RCP8.5). The study then inputs climatic parameters in addition to topographic and groundwater data, in a physically based water balance model to compare runoff simulations. During historical and future periods, climatic projections differed among the RCM runs, especially precipitation and potential evapotranspiration. Uncertainty in climatic projections caused significant uncertainty in runoff estimations. Runoff estimations varied from 12.2 to 45 Mm3 yr−1, with an average value of 24.4 Mm3 yr−1 during 1976–2005, and from 12.3 to 52.4 Mm3 yr−1, with an average value of 32.4 Mm3 yr−1 during 2071–2100. All RCM runs agreed on future runoff increases. Since runoff is a main cause of floods and alleviating flood risk can be hindered if climatic projections are incompetent, the study's findings emphasize on narrowing the uncertainty in GCM projections. The study also encourages Qatar authorities to implement managed aquifer recharge projects like rainwater harvesting to alleviate floods risk.

Funder

Qatar National Research Fund

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3