A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit

Author:

Zhang ChendiORCID,Xu YunchengORCID,Hassan Marwan A.ORCID,Xu Mengzhen,He Pukang

Abstract

Abstract. Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly nonuniform hydraulic characteristics which have been reported to closely interact with the morphological evolution and stability of step-pool features. However, detailed information on the three-dimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a combined approach based on the technologies of structure from motion (SfM) and computational fluid dynamics (CFD). 3D reconstructions of bed surfaces with an artificial step-pool unit built from natural stones at six flow rates were imported to CFD simulations. The combined approach succeeded in visualizing the high-resolution 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow velocity downstream of the step, i.e., the integral recirculation cell at the water surface, streamwise vortices formed at the step toe, and high-speed flow in between. The highly nonuniform distribution of turbulence energy in the pool has been revealed, and two energy dissipaters of comparable magnitude are found to co-exist in the pool. Pool scour development during flow increase leads to the expansion of recirculation cells in the pool, but this expansion stops for the cell near the water surface when flow approaches the critical value for step-pool failure. The micro-bedforms (grain clusters) developed on the negative slope affect the local hydraulics significantly, but this influence is suppressed at the pool bottom. The drag forces on the step stones increase with discharge (before the highest flow value is reached). In comparison, the lift force consistently has a larger magnitude and a more widely varying range. Our results highlight the feasibility and great potential of the approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

State Key Laboratory of Hydroscience and Engineering

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3