Basin inversion and structural architecture as constraints on fluid flow and Pb–Zn mineralization in the Paleo–Mesoproterozoic sedimentary sequences of northern Australia

Author:

Gibson George M.ORCID,Edwards Sally

Abstract

Abstract. As host to several world-class sediment-hosted Pb–Zn deposits and unknown quantities of conventional and unconventional gas, the variably inverted 1730–1640 Ma Calvert and 1640–1575 Ma Isa superbasins of northern Australia have been the subject of numerous seismic reflection studies with a view to better understanding basin architecture and fluid migration pathways. These studies reveal a structural architecture common to inverted sedimentary basins the world over, including much younger examples known to be prospective for oil and gas in the North Sea and elsewhere, with which they might be usefully compared. Such comparisons lend themselves to suggestions that the mineral and petroleum systems in Paleo–Mesoproterozoic northern Australia may have spatially, if not temporally overlapped and shared a common tectonic driver, consistent with the observation that basinal sequences hosting Pb–Zn mineralization in northern Australia are bituminous or abnormally enriched in hydrocarbons. Sediment-hosted Pb–Zn mineralization coeval with basin inversion first occurred during the 1650–1640 Ma Riversleigh Tectonic Event towards the close of the Calvert Superbasin with further pulses taking place during and subsequent to the onset of the 1620–1580 Ma Isa Orogeny and final closure of the Isa Superbasin. Mineralization is typically hosted by the post-rift or syn-inversion fraction of basin fill, contrary to existing interpretations of Pb–Zn ore genesis where the ore-forming fluids are introduced during the rifting or syn-extensional phase of basin development. Mineralizing fluids were instead expelled upwards during times of crustal shortening into structural and/or chemical traps developing in the hangingwalls of inverted normal faults. Inverted normal faults predominantly strike NNW and ENE, giving rise to a complex architecture of compartmentalized sub-basins whose individual uplifted basement blocks and doubly plunging periclinal folds exerted a strong control not only on the distribution and preservation of potential trap rocks but the direction of fluid flow, culminating in the co-location and trapping of mineralizing and hydrocarbon fluids in the same carbonaceous rocks. An important case study is the 1575 Ma Century Pb–Zn deposit where the carbonaceous host rocks served as both a reductant and basin seal during the influx of more oxidized mineralizing fluids, forcing the latter to give up their Pb and Zn metal. A transpressive tectonic regime in which basin inversion and mineralization were paired to folding, uplift, and erosion during arc–continent or continent–continent collision, and accompanied by orogen-parallel extensional collapse and strike-slip faulting best accounts for the observed relationships.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3