Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols
-
Published:2016-02-05
Issue:3
Volume:16
Page:1303-1315
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Xu Y.ORCID, Ramanathan V., Washington W. M.
Abstract
Abstract. Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At the Tibetan Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.
Funder
National Science Foundation U.S. Department of Energy
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference66 articles.
1. Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by
elemental and brown carbon determined from spectral observations, P. Natl.
Acad. Sci., 109, 17366–17371, https://doi.org/10.1073/pnas.1205910109, 2012. 2. Bajracharya S. R., Pradeep K. M., and Basanta R. S.: Global climate change
and melting of Himalayan glaciers. Melting glaciers and rising sea levels:
Impacts and implications, edited by: Ranade, P. S., The Icfai's University
Press, Punjagutta, India, 28–46, 2008. 3. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171,
2013. 4. Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Earth,
112, F02S03, https://doi.org/10.1029/2006JF000631, 2007. 5. Chýlek, P., Ramaswamy, V., and Srivastava, V.: Albedo of
soot-contaminated snow, J. Geophys. Res.-Oceans, 88, 10837–10843,
https://doi.org/10.1029/JC088iC15p10837, 1983.
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|