Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers

Author:

Loebel ErikORCID,Scheinert MirkoORCID,Horwath MartinORCID,Humbert AngelikaORCID,Sohn JuliaORCID,Heidler Konrad,Liebezeit Charlotte,Zhu Xiao XiangORCID

Abstract

Abstract. The mass balance of the Greenland Ice Sheet is strongly influenced by the dynamics of its outlet glaciers. Therefore, it is of paramount importance to accurately and continuously monitor these glaciers, especially the variation in their frontal positions. A temporally comprehensive parameterization of glacier calving is essential for understanding dynamic changes and constraining ice sheet modeling. However, many current calving front records are limited in terms of temporal resolution as they rely on manual delineation, which is laborious and not appropriate considering the increasing amount of satellite imagery available. In this contribution, we address this problem by applying an automated method to extract calving fronts from optical satellite imagery. The core of this workflow builds on recent advances in the field of deep learning while taking full advantage of multispectral input information. The performance of the method is evaluated using three independent test datasets. For the three datasets, we calculate mean delineation errors of 61.2, 73.7, and 73.5 m, respectively. Eventually, we apply the technique to Landsat-8 imagery. We generate 9243 calving front positions across 23 outlet glaciers in Greenland for the period 2013–2021. Resulting time series not only resolve long-term and seasonal signals but also resolve subseasonal patterns. We discuss the implications for glaciological studies and present a first application for analyzing the effect of bedrock topography on calving front variations. Our method and derived results represent an important step towards the development of intelligent processing strategies for glacier monitoring, opening up new possibilities for studying and modeling the dynamics of Greenland's outlet glaciers.

Funder

Helmholtz Association

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

Copernicus GmbH

Reference99 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, TensorFlow [software], https://www.tensorflow.org/ (last access: 16 July 2024), 2015. a

2. Andersen, J. A., Fausto, R. S., Hansen, K., Box, J. E., Andersen, S. B., Ahlstrøm, A. P., van As, D., Citterio, M., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Mankoff, K. D., Pedersen, A. Ø., Shields, C. L., Solgaard, A., and Vandecrux, B.: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018), GEUS Bulletin, 43, e2019430202, https://doi.org/10.34194/GEUSB-201943-02-02,, 2019. a

3. Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sensing, 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a, b, c

4. Benn, D. I., Cowton, T., Todd, J., and Luckman, A.: Glacier Calving in Greenland, Current Climate Change Reports, 3, 282–290, https://doi.org/10.1007/s40641-017-0070-1, 2017. a

5. Bevan, S. L., Luckman, A. J., and Murray, T.: Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers, The Cryosphere, 6, 923–937, https://doi.org/10.5194/tc-6-923-2012, 2012a. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3