A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides

Author:

van den Berg MeritORCID,Gremmen Thomas M.,Vroom Renske J. E.ORCID,van Huissteden Jacobus,Boonman JimORCID,van Huissteden Corine J. A.,van der Velde YpeORCID,Smolders Alfons J. P.,van de Riet Bas P.

Abstract

Abstract. Rewetting drained peatlands for paludiculture purposes is a way to reduce peat oxidation (and thus CO2 emissions) while at the same time it could generate an income for landowners, who need to convert their traditional farming into wetland farming. The side effect of rewetting drained peatlands is that it potentially induces high methane (CH4) emissions. Topsoil removal could reduce this emission due to the removal of easily degradable carbon and nutrients. Another way to limit CH4 emissions is the choice in paludiculture species. In this study we conducted a field experiment in the coastal area of the Netherlands, in which a former non-intensively used drained peat grassland is rewetted to complete inundation (water table ∼ +18 cm) after a topsoil removal of ∼ 20 cm. Two emergent macrophytes with high potential of internal gas transport (Typha latifolia and Typha angustifolia), and a free floating macrophyte (Azolla filiculoides), were introduced and intensive measurement campaigns were conducted to capture CO2 and CH4 fluxes as well as soil and surface water chemistry. Greenhouse gas fluxes were compared with a high-productive peat meadow as a reference site. Topsoil removal reduced the amount of phosphorus and iron in the soil to a large extent. The total amount of soil carbon per volume stayed more or less the same. The salinity of the soil was in general high, defining the system as brackish. Despite the topsoil removal and salinity, we found very high CH4 emissions for T. latifolia (84.8 g CH4 m−2 yr−1) compared with the much lower emissions from T. angustifolia (36.9 g CH4 m−2 yr−1) and Azolla (22.3 g CH4 m−2 yr−1). The high emissions can be partly explained by the large input of dissolved organic carbon into the system, but it could also be caused by plant stress factors like salinity level and herbivory. For the total CO2 flux (including C-export), the rewetting was effective, with a minor uptake of CO2 for Azolla (−0.13 kg CO2 m−2 yr−1) and a larger uptake for the Typha species (−1.14 and −1.26 kg CO2 m−2 yr−1 for T. angustifolia and T. latifolia, respectively) compared with the emission of 2.06 kg CO2 m−2 yr−1 for the reference site. T. angustifolia and Azolla, followed by T. latifolia, seem to have the highest potential for reducing greenhouse gas emissions after rewetting to flooded conditions (−1.4, 2.9, and 10.5 t CO2 eq. ha−1 yr−1, respectively) compared with reference drained peatlands (20.6 t CO2 eq. ha−1 yr−1). When considering the total greenhouse gas balance, other factors, such as biomass use and storage of topsoil after removal, should be considered. Especially the latter factor could cause substantial carbon losses if not kept in anoxic conditions. When calculating the radiative forcing over time for the different paludicrops, which includes the GHG fluxes and the carbon release from the removed topsoil, T. latifolia will start to be beneficial in reducing global warming after 93 years compared with the reference site. For both Azolla and T. angustifolia this will be after 43 years.

Publisher

Copernicus GmbH

Reference88 articles.

1. Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, Ü., and Smith, P.: Emissions of methane from northern peatlands: a review of management impacts and implications for future management options, Ecol. Evol., 6, 7080–7102, https://doi.org/10.1002/ece3.2469, 2016.

2. Abel, S. and Kallweit, T.: Potential Paludiculture Plants of the Holarctic, Proceedings of the Greifswald Mire Centre 04/2022, ISSN 2627‐910X, 440 pp., 2022.

3. Aben, R. C. H., Barros, N., Van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P. M., Peeters, E. T. H. M., Roelofs, J. G. M., De Senerpont Domis, L. N., Stephan, S., Velthuis, M., Van De Waal, D. B., Wik, M., Thornton, B. F., Wilkinson, J., DelSontro, T., and Kosten, S.: Cross continental increase in methane ebullition under climate change, Nat. Commun., 8, 1682, https://doi.org/10.1038/s41467-017-01535-y, 2017.

4. Anderson, C. M.: Cattail decline at Farmington Bay waterfowl management area, The Great Basin Naturalist, 24–34, 1977.

5. Arets, E. J. M. M., Lesschen, J. P., Lerink, B. J. W., Schelhaas, M., and Hendriks, C. M. J.: Information on LULUCF actions, The Netherlands Reporting in accordance to Article 10 of Decision No 529/2013/EU, Ministerie van LNV, https://edepot.wur.nl/538892 (last access: 21 July 2023), 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3