GERB Obs4MIPs: a dataset for evaluating diurnal and monthly variations in top-of-atmosphere radiative fluxes in climate models

Author:

Russell Jacqueline E.ORCID,Bantges Richard J.ORCID,Brindley Helen E.,Bodas-Salcedo Alejandro

Abstract

Abstract. A newly available radiative flux dataset specifically designed to enable the evaluation of the diurnal cycle in top-of-atmosphere (TOA) fluxes as captured by climate and Earth system models is presented. Observations over the period 2007–2012 made by the Geostationary Earth Radiation Budget (GERB) instrument are used to derive monthly hourly mean outgoing longwave radiation (OLR) and reflected shortwave (RSW) fluxes on a regular 1° latitude–longitude grid covering approximately 60° N–60° S and 60° E–60° W. The impact of missing data is evaluated in detail, and a data-filling solution is implemented using estimates of broadband fluxes from the Spinning Enhanced Visible and Infrared Imager flying on the same Meteosat platform, scaled to the GERB observations. This relatively simple approach is shown to deliver an approximate improvement by a factor of 10 in both the bias caused by missing data and the associated variability in the error. To demonstrate the utility of this V1.1 filled GERB Observations for Climate Model Intercomparison Projects (Obs4MIPs) dataset, comparisons are made to radiative fluxes from two climate configurations of the Hadley Centre's Global Environmental Model: HadGEM3-GC3.1 and HadGEM3-GC5.0. Focusing on marine stratocumulus and deep convective cloud regimes, diurnally resolved comparisons between the models and observations highlight discrepancies between the model configurations in terms of their ability to capture the diurnal amplitude and the phase in TOA fluxes, details that cannot be diagnosed by comparisons at lower temporal resolutions. For these cloud regimes the GC5.0 configuration shows improved fidelity to the observations relative to GC3.1, although notable differences remain. The V1.1 filled GERB Obs4MIPs monthly hourly TOA fluxes are available from the Centre for Environmental Data Analysis, with the OLR fluxes accessible at https://doi.org/10.5285/90148d9b1f1c40f1ac40152957e25467 (Bantges et al., 2023a) and the RSW fluxes accessible at https://doi.org/10.5285/57821b58804945deaf4cdde278563ec2 (Bantges et al., 2023b).

Funder

European Organization for the Exploitation of Meteorological Satellites

Natural Environment Research Council

Met Office

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3