National forest carbon harvesting and allocation dataset for the period 2003 to 2018

Author:

Wang DajuORCID,Ren Peiyang,Xia Xiaosheng,Fan Lei,Qin ZhangcaiORCID,Chen Xiuzhi,Yuan Wenping

Abstract

Abstract. Forest harvesting is one of the anthropogenic activities that most significantly affect the carbon budget of forests. However, the absence of explicit spatial information on harvested carbon poses a huge challenge in assessing forest-harvesting impacts, as well as the forest carbon budget. This study utilized provincial-level statistical data on wood harvest, the tree cover loss (TCL) dataset, and a satellite-based vegetation index to develop a Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset. The aim was to provide the spatial location of forest harvesting with a spatial resolution of 30 m and to quantify the post-harvest carbon dynamics. The validations against the surveyed forest harvesting in 133 cities and counties indicated a good performance of the LEAF dataset in capturing the spatial variation of harvested carbon, with a coefficient of determination (R2) of 0.83 between the identified and surveyed harvested carbon. The linear regression slope was up to 0.99. Averaged from 2003 to 2018, forest harvesting removed 68.3 ± 9.3 Mt C yr−1, of which more than 80 % was from selective logging. Of the harvested carbon, 19.6 ± 4.0 %, 2.1 ± 1.1 %, 35.5 ± 12.6 % 6.2 ± 0.3 %, 17.5 ± 0.9 %, and 19.1 ± 9.8 % entered the fuelwood, paper and paperboard, wood-based panels, solid wooden furniture, structural constructions, and residue pools, respectively. Direct combustion of fuelwood was the primary source of carbon emissions after wood harvest. However, carbon can be stored in wood products for a long time, and by 2100, almost 40 % of the carbon harvested during the study period will still be retained. This dataset is expected to provide a foundation and reference for estimating the forestry and national carbon budgets. The 30 m × 30 m harvested-carbon dataset from forests in China can be downloaded at https://doi.org/10.6084/m9.figshare.23641164.v2 (Wang et al., 2023).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3